Reconditioning of Aluminium Engine Blocks
Reconditioning of Aluminium Engine Blocks

MSI Motor Service International GmbH.
And what it stands for.

MSI Motor Service International GmbH is the sales organisation for the global aftermarket activities of Kolbenschnidt Pierburg AG. Under the premium brands KOLBENSCHMIDT, PIERBURG and TRW, we supply a comprehensive range of requirement-oriented products in and on the engine.

Repair shops and engine reconditioners have engine components for more than 2000 different engines at their disposal. All products meet high requirements on quality, economic efficiency and environmental protection.

Kolbenschnidt Pierburg AG.
Renowned Supplier to the International Automotive Industry.

As a long-standing partner of the automotive manufacturers, the companies in the Kolbenschnidt Pierburg Group develop innovative components and system solutions with renowned competence in the fields of air supply and emission control, for oil, water and vacuum pumps, for pistons, engine blocks and engine bearings.

The products of Kolbenschnidt Pierburg Group comply with the high demands and quality standards of the automotive industry. Low emissions, reduced fuel consumption, reliability, quality and safety – there are the forces that drive innovation at Kolbenschnidt Pierburg.

1. Edition 08.06
Article-No. 50 003 804-02
ISBN 978-3-86522-197-1

Published by:
© MSI Motor Service International GmbH
Untere Neckarstraße
74172 Neckarsulm, Germany

Editors:
Alexander Schäfer
Uwe Schilling
Simon Schnaibel

Technical Contributors:
Reiner Holwein
Johann Szopa
Bernd Waldhauer
Ullrich Zucker
Dr. Eduard Köhler
Willi Pröschle

Layout and Production:
Wolfgang Woloki
Hela Werbung GmbH, Heilbronn

We thank the K5 Aluminium Technologie AG for the friendly support.

This document must not be reprinted, duplicated or translated in full or in part without our written consent and without reference to the source of the material.

All content including pictures and diagrams is subject to alteration.
We accept no liability.
Reconditioning of Aluminium Engine Blocks

Preface

Aluminium engine blocks – the trend

Since they were first introduced, engines with aluminium engine blocks have continued to enjoy increasing popularity. The potential in the field of engine construction for passenger cars offered by the reduction in weight has by no means been exhausted. Especially in the case of diesel engines, because of their heavy, robust construction, there is still much potential for saving weight. Therefore the substitution of aluminium for grey cast iron in passenger car engine blocks will continue in the future with greater impetus. The developments in the field of new sliding surface designs are in a state of constant competition between that which is technically feasible, that which is technically necessary and that which is economical. With the worldwide distribution of vehicles equipped with aluminium engine blocks and the ever increasing vehicle mileage, the need for competent engine reconditioning continues to increase.

On the subject

The need for information with respect to engine technology and reconditioning for aluminium engine blocks is enormous. Daily enquiries from customers on this subject bear witness to this. The present brochure was produced as a compendium of information that deals extensively and in a concentrated form with the production, design, reconditioning and repair of aluminium engine blocks for engine reconditioners, workshops and other professionals.

In addition to the normal machining procedures for aluminium cylinder bores, solutions for special problems are also handled as they occur during the repair and reconditioning of the aluminium engine blocks. For example, alternative repair solutions are given for all those aluminium engine blocks of which the cylinder sliding surfaces are coated in a complicated process after casting or also after finishing in order to obtain the desired sliding surface properties.

Due to increasing requirements in the machining of sliding surfaces, it was also necessary to update the existing range of MSI tools for finishing aluminium silicon sliding surfaces to the current standard of series production. In co-operation with KS Aluminium Technologie AG, the market leader in western Europe in the production of aluminium engine blocks in the high-end market and numerous additional specialists and acknowledged professionals, the machining processes currently employed for cylinder finishing in series production have been recorded, adapted and developed further for professional engine reconditioners.
Table of Contents

1 Preface ...3
 1.1 Trademarks, Liability, Patent Rights, Safety Instructions ..6

2 Basic Principles of Aluminium Engine Blocks ..8
 2.1 General ...8
 2.1.1 Reasons for application of aluminium engine blocks ..8
 2.1.2 Aluminium engine blocks for diesel engines as well? ..9
 2.2 Casting Processes ...10
 2.2.1 Overview: Moulds and their associated casting processes ..10
 2.2.2 Sand casting ...10
 2.2.3 Die casting ..11
 2.2.4 High pressure die casting ...12
 2.2.5 Squeeze casting ...13
 2.3 Engine Block Concepts ...14
 2.3.1 Different types of engine block design ...14
 2.3.2 Water jacket construction ..17
 2.3.3 Cylinder head bolt connection ..18
 2.3.4 Piston pin installation bores in the cylinder wall ...19
 2.3.5 Crankcase ventilation openings ...20
 2.4 Sliding Surface Technologies ..21
 2.4.1 Overview of the different sliding surface technologies ...21
 2.4.2 ALUSIL® cylinder sliding surfaces ...22
 2.4.3 LOKASIL® cylinder sliding surfaces ..24
 2.4.4 Titan-nitride-coated cylinder sliding surfaces ...25
 2.4.5 Nickel-coated cylinder sliding surfaces ...26
 2.4.6 Iron-based plasma vaporisation coating ..27
 2.4.7 Laser alloyed cylinder sliding surfaces ...28
 2.4.8 Cylinder liners and inserts made of grey cast iron ..28
 2.4.9 Encapsulated aluminium liner inserts (ALUSIL®, Silitec®) ..30

3 Repair and Machining Procedures ..32
 3.1 Repair Considerations and Recommendations ...32
 3.1.1 Determining and distinguishing between the different sliding surface technologies32
 3.1.2 Availability of suitable repair pistons ..34
 3.1.3 Irreparable aluminium engine blocks? ..34
 3.1.4 When are repair cylinder liners recommended ..35
 3.1.5 Worn and damaged aluminium silicon cylinder sliding surfaces36
 3.1.6 Worn nickel, chrome or iron coated cylinder sliding surfaces ...36
 3.1.7 Damaged laser alloyed cylinder sliding surfaces ...37
 3.1.8 Determining the existing roughness parameters of cylinder sliding surfaces38
 3.1.9 Overview of repair possibilities ..39
Table of contents

3.2 Installing aluminium and grey cast iron cylinder liners ..40
3.2.1 Cylinder liners for grey cast iron engine blocks ...40
3.2.2 Installing cylinder liners in aluminium engine blocks ..42
3.2.3 Shaping cylinder counterbores in aluminium engine blocks ..43
3.2.4 Manufacturing the necessary cylinder liners (ALUSIL®, grey cast iron)44
3.2.5 Preparing the cylinder liner counterbores in the engine block ...48
3.2.6 Shrinking of cylinder liners ...50

3.3 Machining aluminium cylinder sliding surfaces...53
3.3.1 Machines and tools required ..53
3.3.2 Overview of the individual machining steps ...54

3.4 Finish-drilling the cylinders ...55
3.4.1 Drilling tools and cutting material ...55
3.4.2 Machining parameters for drilling ..56

3.5 Honing ...57
3.5.1 What is honing? ..57
3.5.2 The purpose of honing ..58
3.5.3 Comparing the honing of grey cast iron to the honing of aluminium ..58
3.5.4 Requirements of the honing tool and of the honing stones ...60
3.5.5 Cooling lubricant for honing and mechanical exposure process ..62
3.5.6 Machining parameters for honing ..62

3.6 Exposing the silicon cristals ..64
3.6.1 What is the exposure process? ..64
3.6.2 Different silicon exposure processes ...64
3.6.3 Checking the results ..68

3.7 Problems and solutions in the machining of cylinder bores...70
3.7.1 Errors in the geometry of cylinder bores ..70
3.7.2 Errors in cylinder bore geometry due to wrong machining ...72
3.7.3 Cylinder bore ovality caused by bolt distortions ..74
3.7.4 Problems in the machining of blind hole bores ..75
3.7.5 Cross-drilled bores in the cylinder wall ..76

3.8 KS Tools for machining aluminium cylinder bores ..77

4 Attachment ...84

4.1 The small study of surfaces ...84
4.2 Frequently asked questions ..86
4.3 Technical Informations ..90
4.4 Pull-out technical data ..93
4.5 About MSI Motor Service International ..99
Reconditioning of Aluminium Engine Blocks

NOTES

Trademarks used
LOKASIL®, ALUSIL®, Galnikal®, Silumin® are registered trademarks, brand or product names of Kolbenschmidt Pierburg AG.
Silitec® is a registered trademark, brand or product name of DaimlerChrysler AG.

Nikasil®, Chromal® and Silumal® are registered trademarks, brand or product names of Mahle AG.
Other brand or product names mentioned in this brochure are registered trademarks or product names of their manufacturers or of other companies.

Liability
All information in this brochure has been carefully researched and compiled. Nevertheless, errors can occur, information can be translated incorrectly, information may be missing, or the information provided may have changed in the meantime. Therefore, we cannot guarantee or accept legal responsibility for the correctness, completeness, update status or quality of the information provided. We do not accept any liability for damages, especially direct or indirect and material and immaterial arising from the use or misuse of information or incomplete or erroneous information contained in this brochure unless caused by a deliberate act or gross negligence on our part.

Please understand that, due to the variety of already existing and future engine block constructions, we are not able to give information referring to specific manufacturers, nor give specific repair recommendations. Constructions vary from engine to engine, some substantially. It is left to the discretion and experience of the engine reconditioner to check and decide whether, and to what extent, a repair procedure described in this brochure can be used in a specific case. Therefore, the information given shall be used, and the repair procedures described shall be applied solely at the risk and responsibility of the engine reconditioner. Likewise, we shall not be liable for damages arising because the engine reconditioner does not have the necessary technical expertise, the required knowledge of, or experience in repairs.

The extent to which the technical procedures and repair instructions described here will be able to be applied to future generations of engines cannot be predicted and must be checked by the engine reconditioner in each specific case.

Trademarks used

Patents
This information is published without reference to any possible patents or third party rights. We draw express attention to the fact that some machining procedures described in this brochure, in particular sliding surface honing and certain silicon exposing procedures, affect existing patents of KS Aluminium Technologie AG. Therefore the written consent of all owners of patents and licenses must be obtained before using the described procedures in series production, and license fees must be paid.

Safety Instructions
All jobs described in this brochure must be performed only by properly trained specialist personnel with the appropriate equipment (protective clothing, goggles, gloves, ear protection, etc.). Each of the relative safety conditions and accident prevention regulations must be determined, and in each case complied with, by the engine reconditioner himself. Special caution and responsible handling are advised, particularly when dealing with hot components, when using liquid nitrogen and dry ice, and when machining to remove chips.
3.2.2 Installing cylinder liners in aluminium engine blocks

Compared to the aluminium material of the engine block, grey cast iron liners have a lower specific thermal expansion. The grey cast iron liners will expand only about half as far during operation as the surrounding aluminium engine block. For this reason the overlap (press fit) in the aluminium engine block must be greater than in a grey cast iron engine block. Because of the greater overlap and the reduced strength of the aluminium engine blocks, the grey cast iron liners must not be pressed in. The pressure required for pressing would ruin the engine block under certain circumstances.

Aluminium liners do have the same thermal expansion coefficient as an aluminium engine block, but because of their reduced strength would be severely deformed or destroyed during press fitting. Furthermore, aluminium cylinder liners would be seized immediately in the cylinder counterbore due to the surface pressure required. The pressure required for press fitting would increase dramatically and the liner and the engine block would be destroyed.

Note!

When repair liners made of aluminium or grey cast iron are installed in an aluminium engine block, they must basically be inserted into the engine block by the shrinking process.

Slip fit versions of liners such as those often used in grey cast iron engine blocks cannot be used in aluminium engine blocks at all because of stress problems. Generally, press fitting of grey cast iron and aluminium cylinder liners is not possible in aluminium engine blocks.
MSI Motor Service
International GmbH

Untere Neckarstraße
D-74172 Neckarsulm
Phone +49 71 32-33 33 33
Fax +49 71 32-33 28 64

Hamburger Straße 15
D-41540 Dormagen
Phone +49 21 33-2 67-100
Fax +49 21 33-2 67-111

info@msi-motor-service.com
www.msi-motor-service.com